top of page

Citations for Cards

 

  • Abyssal Seafloor:

    • Hein, James R., Andrea Koschinsky, and Thomas Kuhn. “Deep-Ocean Polymetallic Nodules as a Resource for Critical Materials.” Nature Reviews Earth & Environment 1, no. 3 (March 2020): 158–69. https://doi.org/10.1038/s43017-020-0027-0.

    • Jones, Daniel O. B., Stefanie Kaiser, Andrew K. Sweetman, Craig R. Smith, Lenaick Menot, Annemiek Vink, Dwight Trueblood, et al. “Biological Responses to Disturbance from Simulated Deep-Sea Polymetallic Nodule Mining.” PLOS ONE 12, no. 2 (February 8, 2017): e0171750. https://doi.org/10.1371/journal.pone.0171750.

    • Kang, Yajuan, and Shaojun Liu. “The Development History and Latest Progress of Deep-Sea Polymetallic Nodule Mining Technology.” Minerals 11, no. 10 (October 2021): 1132. https://doi.org/10.3390/min11101132.

    • Kuhn, T., A. Wegorzewski, C. Rühlemann, and A. Vink. “Composition, Formation, and Occurrence of Polymetallic Nodules.” In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, edited by Rahul Sharma, 23–63. Cham: Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-52557-0_2.

    • “Minerals | Free Full-Text | The Development History and Latest Progress of Deep-Sea Polymetallic Nodule Mining Technology.” Accessed January 27, 2024. https://www.mdpi.com/2075-163X/11/10/1132.

    • Vanreusel, Ann, Ana Hilario, Pedro A. Ribeiro, Lenaick Menot, and Pedro Martínez Arbizu. “Threatened by Mining, Polymetallic Nodules Are Required to Preserve Abyssal Epifauna.” Scientific Reports 6, no. 1 (June 1, 2016): 26808. https://doi.org/10.1038/srep26808.

    • Wang, Xiaohong, and Werner E. G. Müller. “Marine Biominerals: Perspectives and Challenges for Polymetallic Nodules and Crusts.” Trends in Biotechnology 27, no. 6 (June 1, 2009): 375–83. https://doi.org/10.1016/j.tibtech.2009.03.004.

  • Artisanal Mine:

    • Balza, Lenin H., Lina Diaz, Nicolas Gomez-Parra, and Osmel Manzano. “The Unwritten License: The Social License to Operate in Latin America’s Extractive Sector.” SSRN Scholarly Paper. Rochester, NY, December 15, 2021. https://doi.org/10.2139/ssrn.4188882.

    • Banza Lubaba Nkulu, Célestin, Lidia Casas, Vincent Haufroid, Thierry De Putter, Nelly D. Saenen, Tony Kayembe-Kitenge, Paul Musa Obadia, et al. “Sustainability of Artisanal Mining of Cobalt in DR Congo.” Nature Sustainability 1, no. 9 (September 2018): 495–504. https://doi.org/10.1038/s41893-018-0139-4.

    • Laing, Timothy, and Avanti Nisha Pinto. “Artisanal and Small-Scale Mining and the Low-Carbon Transition: Challenges and Opportunities.” Environmental Science & Policy 149 (November 1, 2023): 103563. https://doi.org/10.1016/j.envsci.2023.103563.

    • Sovacool, Benjamin K. “When Subterranean Slavery Supports Sustainability Transitions? Power, Patriarchy, and Child Labor in Artisanal Congolese Cobalt Mining.” The Extractive Industries and Society 8, no. 1 (March 1, 2021): 271–93. https://doi.org/10.1016/j.exis.2020.11.018.

  • Byproduct:

    • Bolan, Nanthi, Son A. Hoang, Mohsin Tanveer, Lei Wang, Shiv Bolan, Prasanthi Sooriyakumar, Brett Robinson, et al. “From Mine to Mind and Mobiles – Lithium Contamination and Its Risk Management.” Environmental Pollution 290 (December 1, 2021): 118067. https://doi.org/10.1016/j.envpol.2021.118067.

    • Bonnail, Estefanía, Sebastián Vera, and T. Ángel DelValls. “A New Disruptive Technology for Zero-Brine Discharge: Towards a Paradigm Shift.” Applied Sciences 13, no. 24 (January 2023): 13092. https://doi.org/10.3390/app132413092.

    • Flexer, Victoria, Celso Fernando Baspineiro, and Claudia Inés Galli. “Lithium Recovery from Brines: A Vital Raw Material for Green Energies with a Potential Environmental Impact in Its Mining and Processing.” Science of The Total Environment 639 (October 15, 2018): 1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223.

    • Qin, Shenjun, Cunliang Zhao, Yanheng Li, and Yong Zhang. “Review of Coal as a Promising Source of Lithium.” International Journal of Oil, Gas and Coal Technology 9, no. 2 (January 2015): 215–29. https://doi.org/10.1504/IJOGCT.2015.067490.

  • Caldera:

    • Benson, Thomas R., Matthew A. Coble, and John H. Dilles. “Hydrothermal Enrichment of Lithium in Intracaldera Illite-Bearing Claystones.” Science Advances 9, no. 35 (August 30, 2023): eadh8183. https://doi.org/10.1126/sciadv.adh8183.

    • Castor, Stephen B., and Christopher D. Henry. “Lithium-Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin.” Minerals 10, no. 1 (January 2020): 68. https://doi.org/10.3390/min10010068.

    • Dunning, Gail E, Michael F Cox, Andrew G Christy, Ted A Hadley, and Joe Marty. “Geology, Mining History, Mineralogy, and Paragenesis of the McDermitt Caldera Complex, Opalite Mining District, Humboldt County, Nevada, and Malheur County, Oregon” 20 (2019).

    • Glanzman, Richard K., J. Howard McCarthy, and James J. Rytuba. “Lithium in the McDermitt Caldera, Nevada and Oregon.” Energy 3, no. 3 (June 1, 1978): 347–53. https://doi.org/10.1016/0360-5442(78)90031-2.

    • Hollen, Sarah. “The Role of Deliberative Democracy in Environmental Decision-Making: A Case Study of the Thacker Pass Lithium Mining Project,” May 18, 2022. https://dspace.wlu.edu/handle/11021/35860.

    • Nadeau, Olivier, Emily Mick, Philippe Robidoux, Fausto Grassa, Lorenzo Brusca, Alexandre Voinot, and Matthew I. Leybourne. “Lithium Isotopes and Cu-Au Concentrations in Hydrothermal Alterations from Solfatara Volcano, Campi Flegrei Caldera Complex, and La Fossa Volcano, Vulcano Island, Italy: Insights into Epithermal Ore Forming Environments.” Ore Geology Reviews 130 (March 2021): 103934. https://doi.org/10.1016/j.oregeorev.2020.103934.

    • Rodeiro, Manuel. “Mining Thacker Pass: Environmental Justice and the Demands of Green Energy.” Environmental Justic 16, no. 2 (April 2023): 91–95.

    • Shaw, Denis M, and Neil C Sturchio. “Boron-Lithium Relationships in Rhyolites and Associated Thermal Waters of Young Silicic Calderas, with Comments on Incompatible Element Behaviour.” Geochimica et Cosmochimica Acta 56, no. 10 (October 1, 1992): 3723–31. https://doi.org/10.1016/0016-7037(92)90165-F.

    • Uji, Azusa, Jaehyun Song, Nives Dolšak, and Aseem Prakash. “Pursuing Decarbonization along with National Security: Assessing Public Support for the Thacker Pass Lithium Mine.” PLOS ONE 18, no. 1 (January 24, 2023): e0280720. https://doi.org/10.1371/journal.pone.0280720.

  • Carbon Mineralization:

    • Chen, Peng, Siyang Tang, Hairong Yue, Changjun Liu, Chun Li, and Bin Liang. “Lithium Enrichment of High Mg/Li Ratio Brine by Precipitation of Magnesium via Combined CO2 Mineralization and Solvent Extraction.” Industrial & Engineering Chemistry Research 56, no. 19 (May 17, 2017): 5668–78. https://doi.org/10.1021/acs.iecr.6b04892.

    • Matter, Juerg M., Martin Stute, Sandra Ó. Snæbjörnsdottir, Eric H. Oelkers, Sigurdur R. Gislason, Edda S. Aradottir, Bergur Sigfusson, et al. “Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions.” Science 352, no. 6291 (June 10, 2016): 1312–14. https://doi.org/10.1126/science.aad8132.

    • Power, Ian M., Anna L. Harrison, Gregory M. Dipple, Sasha Wilson, Peter B. Kelemen, Michael Hitch, and Gordon Southam. “Carbon Mineralization: From Natural Analogues to Engineered Systems.” Reviews in Mineralogy and Geochemistry 77, no. 1 (January 1, 2013): 305–60. https://doi.org/10.2138/rmg.2013.77.9.

    • Zibilske, L.m. “Carbon Mineralization.” In Methods of Soil Analysis, 835–63. John Wiley & Sons, Ltd, 1994. https://doi.org/10.2136/sssabookser5.2.c38.

  • Centering Use-Value

    • Egbue, Ona. “Assessment of Social Impacts of Lithium for Electric Vehicle Batteries.” IIE Annual Conference. Proceedings, 2012, 1–7.

    • Petavratzi, E., D. Sanchez-Lopez, A. Hughes, J. Stacey, J. Ford, and A. Butcher. “The Impacts of Environmental, Social and Governance (ESG) Issues in Achieving Sustainable Lithium Supply in the Lithium Triangle.” Mineral Economics 35, no. 3 (December 1, 2022): 673–99. https://doi.org/10.1007/s13563-022-00332-4.

    • Prior, Timothy, Patrick A. Wäger, Anna Stamp, Rolf Widmer, and Damien Giurco. “Sustainable Governance of Scarce Metals: The Case of Lithium.” Science of The Total Environment 461–462 (September 1, 2013): 785–91. https://doi.org/10.1016/j.scitotenv.2013.05.042.

  • Charging Station:

    • Han, Weiqun, Yuan Shi, Alexandra Pehlken, Goufang Zhang, Pang-Chieh Sui, and Jinsheng Xiao. “Reuse, Recycling and Recovery of End-of-Life New Energy Vehicles in China.” In Cascade Use in Technologies 2018, edited by Alexandra Pehlken, Matthias Kalverkamp, and Rikka Wittstock, 64–74. Berlin, Heidelberg: Springer, 2019. https://doi.org/10.1007/978-3-662-57886-5_9.

    • Kang, Hai-Yong, and Julie M. Schoenung. “Electronic Waste Recycling: A Review of U.S. Infrastructure and Technology Options.” Resources, Conservation and Recycling 45, no. 4 (December 1, 2005): 368–400. https://doi.org/10.1016/j.resconrec.2005.06.001.

    • Khalid, Mohd Rizwan, Irfan A. Khan, Salman Hameed, M. Syed Jamil Asghar, and Jong-Suk Ro. “A Comprehensive Review on Structural Topologies, Power Levels, Energy Storage Systems, and Standards for Electric Vehicle Charging Stations and Their Impacts on Grid.” IEEE Access 9 (2021): 128069–94. https://doi.org/10.1109/ACCESS.2021.3112189.

    • Khan, Wajahat, Furkan Ahmad, and Mohammad Saad Alam. “Fast EV Charging Station Integration with Grid Ensuring Optimal and Quality Power Exchange.” Engineering Science and Technology, an International Journal 22, no. 1 (February 1, 2019): 143–52. https://doi.org/10.1016/j.jestch.2018.08.005.

    • Ma, Chao-Tsung. “System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review.” Energies 12, no. 21 (January 2019): 4201. https://doi.org/10.3390/en12214201.

    • Meyer, Danielle, and Jiankang Wang. “Integrating Ultra-Fast Charging Stations within the Power Grids of Smart Cities: A Review.” IET Smart Grid 1, no. 1 (2018): 3–10. https://doi.org/10.1049/iet-stg.2018.0006.

    • Wang, Lu, Zian Qin, Tim Slangen, Pavol Bauer, and Thijs van Wijk. “Grid Impact of Electric Vehicle Fast Charging Stations: Trends, Standards, Issues and Mitigation Measures - An Overview.” IEEE Open Journal of Power Electronics 2 (2021): 56–74. https://doi.org/10.1109/OJPEL.2021.3054601.

  • Commoning:

  • Democratizing Production:

    • Nadesan, Majia, Martin Pasqualetti, and Jennifer Keahey. Energy Democracies for Sustainable Futures. Elsevier, 2022. https://doi.org/10.1016/B978-0-12-822796-1.09983-6.

    • Pichler, Melanie, Cornelia Staritz, Karin Küblböck, Christina Plank, Werner Raza, and Fernando Ruiz Peyré, eds. Fairness and Justice in Natural Resource Politics. First issued in paperback. Routledge Explorations in Environmental Studies. London New York: Routledge, Taylor & Francis Group, 2018.

    • Santos, Boaventura de Sousa (editor), and José Manuel (editor) Mendes. Demodiversity: Towards Post-Abyssal Democracies. Epistemologies of the South. New York, NY: Routledge, 2021. https://proxy1.library.virginia.edu/login?url=https://www.taylorfrancis.com/books/9781003052937.

  • Dust:

    • Chen, Shichen, Zhirong Wang, and Wei Yan. “Identification and Characteristic Analysis of Powder Ejected from a Lithium Ion Battery during Thermal Runaway at Elevated Temperatures.” Journal of Hazardous Materials 400 (December 5, 2020): 123169. https://doi.org/10.1016/j.jhazmat.2020.123169.

    • D’Ovidio, Gianluca, Francisco Martín-Fuertes, Juan Carlos Marugán, Santiago Bermejo, and Francesco Saverio Nitti. “Lithium Fire Protection Design Approach in IFMIF-DONES Facility.” Fusion Engineering and Design 189 (April 1, 2023): 113446. https://doi.org/10.1016/j.fusengdes.2023.113446.

    • Gu, Guozeng, and Tianming Gao. “Sustainable Production of Lithium Salts Extraction from Ores in China: Cleaner Production Assessment.” Resources Policy 74 (December 1, 2021): 102261. https://doi.org/10.1016/j.resourpol.2021.102261.

    • Steiner, Zvi, William M. Landing, Madeleine S. Bohlin, Mervyn Greaves, Satya Prakash, P. N. Vinayachandran, and Eric P. Achterberg. “Variability in the Concentration of Lithium in the Indo-Pacific Ocean.” Global Biogeochemical Cycles 36, no. 6 (2022): e2021GB007184. https://doi.org/10.1029/2021GB007184.

    • Tran, Thanh Tuan, Seong Ho Son, and Man Seung Lee. “Recovery of High-Purity Lithium Compounds from the Dust of the Smelting Reduction Process for Spent Lithium-Ion Batteries.” Korean Journal of Metals and Materials 60, no. 4 (March 28, 2022): 291–300.

  • EV Recycling Graveyards:

  • Evaporation Ponds:

    • Song, Weijun, Hongze Gang, Yuanqing Ma, Shizhong Yang, and Bozhong Mu. “Migration Behavior of Lithium during Brine Evaporation and KCl Production Plants in Qarhan Salt Lake.” Minerals 7, no. 4 (April 2017): 57. https://doi.org/10.3390/min7040057.

    • Sterba, Jiri, Alicja Krzemień, Pedro Riesgo Fernández, Carmen Escanciano García-Miranda, and Gregorio Fidalgo Valverde. “Lithium Mining: Accelerating the Transition to Sustainable Energy.” Resources Policy 62 (August 1, 2019): 416–26. https://doi.org/10.1016/j.resourpol.2019.05.002.

  • Geyser Field:

    • Huang, Tai-Yuan, Jesús R. Pérez-Cardona, Fu Zhao, John W. Sutherland, and Mariappan Parans Paranthaman. “Life Cycle Assessment and Techno-Economic Assessment of Lithium Recovery from Geothermal Brine.” ACS Sustainable Chemistry & Engineering 9, no. 19 (May 17, 2021): 6551–60. https://doi.org/10.1021/acssuschemeng.0c08733.

    • Kalmykov, Denis, Sergey Makaev, Georgy Golubev, Ilia Eremeev, Vladimir Vasilevsky, Jianfeng Song, Tao He, and Alexey Volkov. “Operation of Three-Stage Process of Lithium Recovery from Geothermal Brine: Simulation.” Membranes 11, no. 3 (March 2021): 175. https://doi.org/10.3390/membranes11030175.

    • Paranthaman, Mariappan Parans, Ling Li, Jiaqi Luo, Thomas Hoke, Huseyin Ucar, Bruce A. Moyer, and Stephen Harrison. “Recovery of Lithium from Geothermal Brine with Lithium–Aluminum Layered Double Hydroxide Chloride Sorbents.” Environmental Science & Technology 51, no. 22 (November 21, 2017): 13481–86. https://doi.org/10.1021/acs.est.7b03464.

    • Stringfellow, William T., and Patrick F. Dobson. “Technology for the Recovery of Lithium from Geothermal Brines.” Energies 14, no. 20 (January 2021): 6805. https://doi.org/10.3390/en14206805.

  • Injection Well:

    • Flexer, Victoria, Celso Fernando Baspineiro, and Claudia Inés Galli. “Lithium Recovery from Brines: A Vital Raw Material for Green Energies with a Potential Environmental Impact in Its Mining and Processing.” Science of The Total Environment 639 (October 15, 2018): 1188–1204. https://doi.org/10.1016/j.scitotenv.2018.05.223.

    • Saftner, Daniel, Kevin Heintz, and Ron Hershey. “Identifying Potential Hydrologic Impacts of Lithium Extraction in Nevada,” n.d.

    • Weinand, Jann Michael, Ganga Vandenberg, Stanley Risch, Johannes Behrens, Noah Pflugradt, Jochen Linßen, and Detlef Stolten. “Low-Carbon Lithium Extraction Makes Deep Geothermal Plants Cost-Competitive in Future Energy Systems.” Advances in Applied Energy 11 (September 1, 2023): 100148. https://doi.org/10.1016/j.adapen.2023.100148.

  • Liquid:

  • Manufacturing Center:

    • Jetin, Bruno. “Electric Batteries and Critical Materials Dependency: A Geopolitical Analysis of the USA and the European Union.” International Journal of Automotive Technology and Management 23, no. 4 (2023). https://doi.org/10.1504/IJATM.2023.10059315.

    • Mehdi, Ahmed, and Dr Tom Moerenhout. “The IRA and the US Battery Supply Chain: One Year On,” 2023.

    • Whiton, Jacob, and Greg LeRoy. “Power Outrage: Will Heavily Subsidized Battery Factories Generate Substandard Jobs?” Good Jobs First, July 2023.

  • Metabolic Rift:

    • Pereira, Godofredo. “Caring for the Dead: The Afterlives of Collective Bodies.” In Rights of Future Generations: Conditions, edited by Adrian Lahoud and Bagnato Andrea, 36–40. Sharjah: Hatje Cantz, 2020. https://researchonline.rca.ac.uk/4560/.

    • Saito, Kohei. Marx in the Anthropocene: Towards the Idea of Degrowth Communism. Cambridge: Cambridge University Press, 2023. https://doi.org/10.1017/9781108933544.

    • Taffel, Sy. “Data and Oil: Metaphor, Materiality and Metabolic Rifts.” New Media & Society 25, no. 5 (May 1, 2023): 980–98. https://doi.org/10.1177/14614448211017887.

  • Metabolism:

    • Fakhri, Hajar, Ganesh Pathare, Abul Fajol, Bingbing Zhang, Thomas Bock, Reinhard Kandolf, Erwin Schleicher, et al. “Regulation of Mineral Metabolism by Lithium.” Pflügers Archiv - European Journal of Physiology 466, no. 3 (March 1, 2014): 467–75. https://doi.org/10.1007/s00424-013-1340-y.

    • Humphries, Murray M., and Kevin S. McCann. “Metabolic Ecology.” Journal of Animal Ecology 83, no. 1 (2014): 7–19.

    • Kibert, Charles J., Jan Sendzimir, and Brad Guy. “Construction Ecology and Metabolism: Natural System Analogues for a Sustainable Built Environment.” Construction Management and Economics 18, no. 8 (December 1, 2000): 903–16. https://doi.org/10.1080/014461900446867.

    • Mak, Tony W. L., Chi-Chung Shek, Chun-Chung Chow, Yun-Kwok Wing, and Sing Lee. “Effects of Lithium Therapy on Bone Mineral Metabolism: A Two-Year Prospective Longitudinal Study1.” The Journal of Clinical Endocrinology & Metabolism 83, no. 11 (November 1, 1998): 3857–59. https://doi.org/10.1210/jcem.83.11.5269.

    • Mallette, Lawrence E., and Eric Eichhorn. “Effects of Lithium Carbonate on Human Calcium Metabolism.” Archives of Internal Medicine 146, no. 4 (April 1, 1986): 770–76. https://doi.org/10.1001/archinte.1986.00360160214027.

    • Marquet, Pablo A., Fabio A. Labra, and Brian A. Maurer. “Metabolic Ecology: Linking Individuals to Ecosystems.” Ecology 85, no. 7 (2004): 1794–96.

    • Martinez-Alier, Joan. “Social Metabolism, Ecological Distribution Conflicts, and Languages of Valuation.” Capitalism Nature Socialism 20, no. 1 (March 1, 2009): 58–87. https://doi.org/10.1080/10455750902727378.

    • Price, Charles A., Joshua S Weitz, Van M. Savage, James Stegen, Andrew Clarke, David A. Coomes, Peter S. Dodds, et al. “Testing the Metabolic Theory of Ecology.” Ecology Letters 15, no. 12 (2012): 1465–74. https://doi.org/10.1111/j.1461-0248.2012.01860.x.

    • Sibly, Richard M., James H. Brown, and Astrid Kodric-Brown. Metabolic Ecology: A Scaling Approach. John Wiley & Sons, 2012.

    • “The Boundaries of Urban Metabolism: Towards a Political–Industrial Ecology - Joshua P. Newell, Joshua J. Cousins, 2015.” Accessed February 3, 2024. https://journals.sagepub.com/doi/full/10.1177/0309132514558442?casa_token=H45vczM9iSgAAAAA%3ArdkwAPglTFCXrPXqXOufADXyZ6M6thCOliEaR_SPJrGmu1VR8tLrv9AkuEyGaabKoVBFVt8yeKweVw.

  • Mineral:

    • CHAPMAN, J. E., D. A. ROTHERY, P. W. FRANCIS, and A. PONTUAL. “Remote Sensing of Evaporite Mineral Zonation in Salt Flats (Salars).” International Journal of Remote Sensing 10, no. 1 (January 1, 1989): 245–55. https://doi.org/10.1080/01431168908903860.

    • Godfrey, Linda, and Fernanda Álvarez-Amado. “Volcanic and Saline Lithium Inputs to the Salar de Atacama.” Minerals 10, no. 2 (February 2020): 201. https://doi.org/10.3390/min10020201.

    • Li, Huan, Jacques Eksteen, and Ge Kuang. “Recovery of Lithium from Mineral Resources: State-of-the-Art and Perspectives – A Review.” Hydrometallurgy 189 (November 1, 2019): 105129. https://doi.org/10.1016/j.hydromet.2019.105129.

    • Tadesse, Bogale, Fidele Makuei, Boris Albijanic, and Laurence Dyer. “The Beneficiation of Lithium Minerals from Hard Rock Ores: A Review.” Minerals Engineering 131 (January 15, 2019): 170–84. https://doi.org/10.1016/j.mineng.2018.11.023.

  • Miner’s Camp:

  • Mutualism:

    • Cai, Xunchao, Li Tian, Chiyu Chen, Weiming Huang, Yongjie Yu, Changkun Liu, Bo Yang, Xiaoying Lu, and Yanping Mao. “Phylogenetically Divergent Bacteria Consortium from Neutral Activated Sludge Showed Heightened Potential on Bioleaching Spent Lithium-Ion Batteries.” Ecotoxicology and Environmental Safety 223 (October 15, 2021): 112592. https://doi.org/10.1016/j.ecoenv.2021.112592.

    • “Hopeful Extinctions? Tesla, Technological Solutionism and the Anthropocene | Culture Unbound.” Accessed February 3, 2024. https://journal.ep.liu.se/CU/article/view/412.

    • Tsing, Anna Lowenhaupt. The Mushroom at the End of the World: On the Possibility of Life in Capitalist Ruins. Princeton University Press, 2015. https://doi.org/10.2307/j.ctvc77bcc.

  • Open Pit Mine:

    • Chen, Jianping, Ke Li, Kuo-Jen Chang, Giulia Sofia, and Paolo Tarolli. “Open-Pit Mining Geomorphic Feature Characterisation.” International Journal of Applied Earth Observation and Geoinformation 42 (October 1, 2015): 76–86. https://doi.org/10.1016/j.jag.2015.05.001.

    • Hawkins, Amy, and Amy Hawkins Senior China correspondent. “At Least Six Killed in Open-Pit Coalmine Collapse in North China.” The Guardian, February 23, 2023, sec. World news. https://www.theguardian.com/world/2023/feb/23/miners-killed-in-open-pit-coalmine-collapse-in-north-china.

    • Kasap, Yaşar, and Ela Subaşı. “Risk Assessment of Occupational Groups Working in Open Pit Mining: Analytic Hierarchy Process.” Journal of Sustainable Mining 16, no. 2 (January 1, 2017): 38–46. https://doi.org/10.1016/j.jsm.2017.07.001.

    • Kirin, Snezana, Aleksandar Sedmak, Wei Li, Miodrag Brzaković, Igor Miljanović, Ana Petrović, and Simon Sedmak. “Human Factor Risk Management Procedures Applied in the Case of Open Pit Mine.” Engineering Failure Analysis 126 (August 1, 2021): 105456. https://doi.org/10.1016/j.engfailanal.2021.105456.

    • León-Mejía, Grethel, Jose Eduardo Vargas, Milton Quintana-Sosa, Robinson Alvarez Rueda, Jose Pérez Pérez, Alvaro Miranda-Guevara, Ornella Fiorillo Moreno, et al. “Exposure to Coal Mining Can Lead to Imbalanced Levels of Inorganic Elements and DNA Damage in Individuals Living near Open-Pit Mining Sites.” Environmental Research 227 (June 15, 2023): 115773. https://doi.org/10.1016/j.envres.2023.115773.

    • Nadig, Smruthi. “What Can Be Learned from Mining Accidents in 2022?” Mining Technology (blog), February 12, 2023. https://www.mining-technology.com/features/mining-disasters-2022-map/.

    • Rani, Archana. “Coal Mine Accident in China’s Guizhou Province Kills 16 Miners.” Mining Technology (blog), September 25, 2023. https://www.mining-technology.com/news/coal-accident-guizhou-16/.

    • “Rescue Mission Continues in Zambia for Miners Buried in Mudslide | Mining News | Al Jazeera.” Accessed February 3, 2024. https://www.aljazeera.com/news/2023/12/5/zambia-digs-for-miners-buried-in-open-pit-mudslide.

    • Soni, Abhay. Mining Techniques: Past, Present and Future. BoD – Books on Demand, 2021.

    • Souza, Jane, Jacqueline Castelo Branco, and J. Santos Baptista. “Work Accidents Related to Heavy Equipment in the Open Pit Extractive Industry: A Systematic Review.” In Occupational and Environmental Safety and Health V, edited by Pedro M. Arezes, Rui B. Melo, Paula Carneiro, Jacqueline Castelo Branco, Ana Colim, Nélson Costa, Susana Costa, et al., 783–91. Studies in Systems, Decision and Control. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-38277-2_62.

    • Vara, Vasanthi. “Top Ten Biggest Lithium Mines in the World.” Mining Technology (blog), August 30, 2019. https://www.mining-technology.com/features/top-ten-biggest-lithium-mines/.

    • Wang, Qiankuan, Aiguo Xing, Xueyong Xu, Ye Zhou, Qiang Yang, Hongzhu Song, Jun Peng, Longxiang Zhai, Muhammad Bilal, and Yiwei Liu. “Formation Mechanism and Dynamic Process of Open-Pit Coal Mine Landslides: A Case Study of the Xinjing Landslide in Inner Mongolia, China.” Landslides, January 17, 2024. https://doi.org/10.1007/s10346-023-02193-6.

    • Xie, Jiali, Zhixiang Lu, Shengchun Xiao, and Changzhen Yan. “The Latest Desertification Process and Its Driving Force in Alxa League from 2000 to 2020.” Remote Sensing 15, no. 19 (January 2023): 4867. https://doi.org/10.3390/rs15194867.

  • Overburden:

    • Liu, Wenjuan, and Datu B. Agusdinata. “Dynamics of Local Impacts in Low-Carbon Transition: Agent-Based Modeling of Lithium Mining-Community-Aquifer Interactions in Salar de Atacama, Chile.” The Extractive Industries and Society 8, no. 3 (September 1, 2021): 100927. https://doi.org/10.1016/j.exis.2021.100927.

    • Oggeri, Claudio, Taddeo Maria Fenoglio, Alberto Godio, and Raffaele Vinai. “Overburden Management in Open Pits: Options and Limits in Large Limestone Quarries.” International Journal of Mining Science and Technology 29, no. 2 (March 1, 2019): 217–28. https://doi.org/10.1016/j.ijmst.2018.06.011.

  • Panarchy:

  • Rock:

    • Kundu, Tonmoy, Swagat S. Rath, Surya Kanta Das, Pankaj Kumar Parhi, and Shivakumar I. Angadi. “Recovery of Lithium from Spodumene-Bearing Pegmatites: A Comprehensive Review on Geological Reserves, Beneficiation, and Extraction.” Powder Technology 415 (February 1, 2023): 118142. https://doi.org/10.1016/j.powtec.2022.118142.

    • Rowe, Robert B. “Pegmatitic Lithium Deposits in Canada.” Economic Geology 49, no. 5 (August 1, 1954): 501–15. https://doi.org/10.2113/gsecongeo.49.5.501.

    • Schaller, Waldemar T. “The Genesis of Lithium Pegmatites.” American Journal of Science 10, no. 57 (1925): 269–79.

  • Salar:

    • Castro-Severyn, Juan, Coral Pardo-Esté, Katterinne N. Mendez, Jonathan Fortt, Sebastian Marquez, Franck Molina, Eduardo Castro-Nallar, Francisco Remonsellez, and Claudia P. Saavedra. “Living to the High Extreme: Unraveling the Composition, Structure, and Functional Insights of Bacterial Communities Thriving in the Arsenic-Rich Salar de Huasco Altiplanic Ecosystem.” Microbiology Spectrum 9, no. 1 (June 30, 2021): 10.1128/spectrum.00444-21. https://doi.org/10.1128/spectrum.00444-21.

    • Farias, Maria Eugenia, Maria Cecilia Rasuk, Kimberley L. Gallagher, Manuel Contreras, Daniel Kurth, Ana Beatriz Fernandez, Daniel Poiré, Fernando Novoa, and Pieter T. Visscher. “Prokaryotic Diversity and Biogeochemical Characteristics of Benthic Microbial Ecosystems at La Brava, a Hypersaline Lake at Salar de Atacama, Chile.” PLOS ONE 12, no. 11 (November 15, 2017): e0186867. https://doi.org/10.1371/journal.pone.0186867.

    • Garcia, M. G., L. G. Borda, L. V. Godfrey, R. L. López Steinmetz, and A. Losada-Calderon. “Characterization of Lithium Cycling in the Salar De Olaroz, Central Andes, Using a Geochemical and Isotopic Approach.” Chemical Geology 531 (January 5, 2020): 119340. https://doi.org/10.1016/j.chemgeo.2019.119340.

    • Godfrey, Linda, and Fernanda Álvarez-Amado. “Volcanic and Saline Lithium Inputs to the Salar de Atacama.” Minerals 10, no. 2 (February 2020): 201. https://doi.org/10.3390/min10020201.

    • Liu, Wenjuan, Datu B. Agusdinata, and Soe W. Myint. “Spatiotemporal Patterns of Lithium Mining and Environmental Degradation in the Atacama Salt Flat, Chile.” International Journal of Applied Earth Observation and Geoinformation 80 (August 2019): 145–56. https://doi.org/10.1016/j.jag.2019.04.016.

    • López Steinmetz, Romina Lucrecia, Stefano Salvi, Carisa Sarchi, Carla Santamans, and Lorena Cecilia López Steinmetz. “Lithium and Brine Geochemistry in the Salars of the Southern Puna, Andean Plateau of Argentina.” Economic Geology 115, no. 5 (August 1, 2020): 1079–96. https://doi.org/10.5382/econgeo.4754.

    • Rettig, S.L., B.F. Jones, and F. Risacher. “Geochemical Evolution of Brines in the Salar of Uyuni, Bolivia.” Chemical Geology 30, no. 1–2 (August 1980): 57–79. https://doi.org/10.1016/0009-2541(80)90116-3.

    • Risacher, François, and Bertrand Fritz. “Bromine Geochemistry of Salar de Uyuni and Deeper Salt Crusts, Central Altiplano, Bolivia.” Chemical Geology 167, no. 3 (June 15, 2000): 373–92. https://doi.org/10.1016/S0009-2541(99)00251-X.

    • Weinand, Jann Michael, Ganga Vandenberg, Stanley Risch, Johannes Behrens, Noah Pflugradt, Jochen Linßen, and Detlef Stolten. “Low-Carbon Lithium Extraction Makes Deep Geothermal Plants Cost-Competitive in Future Energy Systems.” Advances in Applied Energy 11 (September 1, 2023): 100148. https://doi.org/10.1016/j.adapen.2023.100148.

    • Y, Fernando Ide, and Ihor A. Kunasz. “Origin of Lithium in Salar De Atacama, Northern Chile,” 1990. https://archives.datapages.com/data/circ_pac/0012/0165_f.htm.

  • Saline Lake:

    • Gajardo, Gonzalo, and Stella Redón. “Andean Hypersaline Lakes in the Atacama Desert, Northern Chile: Between Lithium Exploitation and Unique Biodiversity Conservation.” Conservation Science and Practice 1, no. 9 (2019): e94. https://doi.org/10.1111/csp2.94.

    • Li, Qingkuan, Qishun Fan, Jianping Wang, Zhanjie Qin, Xiangru Zhang, Haicheng Wei, Yongsheng Du, and Fashou Shan. “Hydrochemistry, Distribution and Formation of Lithium-Rich Brines in Salt Lakes on the Qinghai-Tibetan Plateau.” Minerals 9, no. 9 (September 2019): 528. https://doi.org/10.3390/min9090528.

    • Liu, Gui, Zhongwei Zhao, and Ahmad Ghahreman. “Novel Approaches for Lithium Extraction from Salt-Lake Brines: A Review.” Hydrometallurgy 187 (August 2019): 81–100. https://doi.org/10.1016/j.hydromet.2019.05.005.

    • Munk, Lee Ann, Scott A. Hynek, Dwight C. Bradley, David Boutt, Keith Labay, and Hillary Jochens. “Lithium Brines: A Global Perspective.” In Rare Earth and Critical Elements in Ore Deposits, edited by Philip L. Verplanck and Murray W. Hitzman, 18:0. Society of Economic Geologists, 2016. https://doi.org/10.5382/Rev.18.14.

    • Xu, Zhenhua, Haijun Zhang, Ruiyuan Wang, Wenjun Gui, Guofeng Liu, and Ying Yang. “Systemic and Direct Production of Battery-Grade Lithium Carbonate from a Saline Lake.” Industrial & Engineering Chemistry Research 53, no. 42 (October 22, 2014): 16502–7. https://doi.org/10.1021/ie502749n.

  • Shale:

    • Khatoon, Rabia, Yeek-Chia Ho, Shamsul Rahman B. Mohamed Kutty, Khairulazhar Jumbri, Maung Maung Myo Thant, and Dong Suk Han. “Lithium and Boron Recovery From Oil Field Produced Water: A Mini Review.” In Proceedings of the International Conference on Emerging Smart Cities (ICESC2022), edited by Bashar S. Mohammed, Teh Hee Min, Muslich Hartadi Sutanto, Tri Basuki Joewono, and Sholihin As’ad, 119–31. Lecture Notes in Civil Engineering. Singapore: Springer Nature, 2024. https://doi.org/10.1007/978-981-99-1111-0_11.

    • Khatoon, Rabia, Ratchaprapa Raksasat, Yeek Chia Ho, Jun Wei Lim, Khairulazhar Jumbri, Chii-Dong Ho, Yi Jing Chan, Eman Alaaeldin Abdelfattah, and Kuan Shiong Khoo. “Reviewing Advanced Treatment of Hydrocarbon-Contaminated Oilfield-Produced Water with Recovery of Lithium.” Sustainability 15, no. 22 (January 2023): 16016. https://doi.org/10.3390/su152216016.

    • Knapik, Ewa, Grzegorz Rotko, and Marta Marszałek. “Recovery of Lithium from Oilfield Brines—Current Achievements and Future Perspectives: A Mini Review.” Energies 16, no. 18 (January 2023): 6628. https://doi.org/10.3390/en16186628.

    • Kumar, Amit, Hiroki Fukuda, T. Alan Hatton, and John H. V Lienhard. “Lithium Recovery from Oil and Gas Produced Water: A Need for a Growing Energy Industry.” ACS Energy Letters 4, no. 6 (June 14, 2019): 1471–74. https://doi.org/10.1021/acsenergylett.9b00779.

    • Liu, Qian, Ping Yang, Wenwen Tu, Hao Sun, Shubo Li, and Yuncong Zhang. “Lithium Recovery from Oil and Gas Produced Water: Opportunities, Challenges, and Future Outlook.” Journal of Water Process Engineering 55 (October 1, 2023): 104148. https://doi.org/10.1016/j.jwpe.2023.104148.

    • Siagian, U. W. R., L. Lustiyani, K. Khoiruddin, S. Ismadji, I. G. Wenten, and S. Adisasmito. “From Waste to Resource: Membrane Technology for Effective Treatment and Recovery of Valuable Elements from Oilfield Produced Water.” Environmental Pollution 340 (January 1, 2024): 122717. https://doi.org/10.1016/j.envpol.2023.122717.

  • Slurry:

    • Stringfellow, William T., and Patrick F. Dobson. “Technology for the Recovery of Lithium from Geothermal Brines.” Energies 14, no. 20 (January 2021): 6805. https://doi.org/10.3390/en14206805.

    • Zhang, Ye, Yuehua Hu, Li Wang, and Wei Sun. “Systematic Review of Lithium Extraction from Salt-Lake Brines via Precipitation Approaches.” Minerals Engineering 139 (August 1, 2019): 105868. https://doi.org/10.1016/j.mineng.2019.105868.

  • Tailings Pond:

    • Bolan, Nanthi, Son A. Hoang, Mohsin Tanveer, Lei Wang, Shiv Bolan, Prasanthi Sooriyakumar, Brett Robinson, et al. “From Mine to Mind and Mobiles – Lithium Contamination and Its Risk Management.” Environmental Pollution 290 (December 1, 2021): 118067. https://doi.org/10.1016/j.envpol.2021.118067.

    • Elektorowicz, M., and Z. Keropian. “Lithium, Vanadium and Chromium Uptake Ability of Brassica Juncea from Lithium Mine Tailings.” International Journal of Phytoremediation 17, no. 6 (June 3, 2015): 521–28. https://doi.org/10.1080/15226514.2013.876966.

    • Ezama, Ignacio. “Direct Extraction Lithium Processes: The Challenges of Spent Brine Disposal,” n.d.

    • Gao, Juan-Qin, Yang Yu, Deng-Hong Wang, Wei Wang, Cheng-Hui Wang, Hong-Zhang Dai, Xue-Feng Hao, and Kuang Cen. “Effects of Lithium Resource Exploitation on Surface Water at Jiajika Mine, China.” Environmental Monitoring and Assessment 193, no. 2 (January 23, 2021): 81. https://doi.org/10.1007/s10661-021-08867-9.

    • Islam, Kamrul, and Shinsuke Murakami. “Global-Scale Impact Analysis of Mine Tailings Dam Failures: 1915–2020.” Global Environmental Change 70 (September 1, 2021): 102361. https://doi.org/10.1016/j.gloenvcha.2021.102361.

    • Kaunda, Rennie B. “Potential Environmental Impacts of Lithium Mining.” Journal of Energy & Natural Resources Law 38, no. 3 (July 2, 2020): 237–44. https://doi.org/10.1080/02646811.2020.1754596.

    • Lumbroso, Darren, Mark Davison, Richard Body, and Gregor Petkovšek. “Modelling the Brumadinho Tailings Dam Failure, the Subsequent Loss of Life and How It Could Have Been Reduced.” Preprint. Hydrological Hazards, June 4, 2020. https://doi.org/10.5194/nhess-2020-159.

    • Sarker, Shuronjit Kumar, Nawshad Haque, Muhammed Bhuiyan, Warren Bruckard, and Biplob Kumar Pramanik. “Recovery of Strategically Important Critical Minerals from Mine Tailings.” Journal of Environmental Chemical Engineering 10, no. 3 (June 1, 2022): 107622. https://doi.org/10.1016/j.jece.2022.107622.

  • Terrane:

    • Kesler, Stephen E., Paul W. Gruber, Pablo A. Medina, Gregory A. Keoleian, Mark P. Everson, and Timothy J. Wallington. “Global Lithium Resources: Relative Importance of Pegmatite, Brine and Other Deposits.” Ore Geology Reviews 48 (October 1, 2012): 55–69. https://doi.org/10.1016/j.oregeorev.2012.05.006.

    • Kundu, Tonmoy, Swagat S. Rath, Surya Kanta Das, Pankaj Kumar Parhi, and Shivakumar I. Angadi. “Recovery of Lithium from Spodumene-Bearing Pegmatites: A Comprehensive Review on Geological Reserves, Beneficiation, and Extraction.” Powder Technology 415 (February 1, 2023): 118142. https://doi.org/10.1016/j.powtec.2022.118142.

    • Liu, Chen, Ru-Cheng Wang, Fu-Yuan Wu, Lei Xie, Xiao-Chi Liu, Xing-Kui Li, Lei Yang, and Xue-Jiao Li. “Spodumene Pegmatites from the Pusila Pluton in the Higher Himalaya, South Tibet: Lithium Mineralization in a Highly Fractionated Leucogranite Batholith.” Lithos 358–359 (April 1, 2020): 105421. https://doi.org/10.1016/j.lithos.2020.105421.

    • Roy, Tomy, Benoît Plante, Mostafa Benzaazoua, and Isabelle Demers. “Geochemistry and Mineralogy of a Spodumene-Pegmatite Lithium Ore at Various Mineral Beneficiation Stages.” Minerals Engineering 202 (November 1, 2023): 108312. https://doi.org/10.1016/j.mineng.2023.108312.

  • Waste:

    • Bhar, Madhushri, Shuvajit Ghosh, Satheesh Krishnamurthy, Y. Kaliprasad, and Surendra K. Martha. “A Review on Spent Lithium-Ion Battery Recycling: From Collection to Black Mass Recovery.” RSC Sustainability 1, no. 5 (2023): 1150–67. https://doi.org/10.1039/D3SU00086A.

    • Donnelly, Laurance, Duncan Pirrie, Matthew Power, Ian Corfe, Jukka Kuva, Sari Lukkari, Yann Lahaye, et al. “The Recycling of End-of-Life Lithium-Ion Batteries and the Phase Characterisation of Black Mass.” Recycling 8, no. 4 (August 2023): 59. https://doi.org/10.3390/recycling8040059.

    • Liboiron, Max. Pollution Is Colonialism. Duke University Press, 2021. https://doi.org/10.2307/j.ctv1jhvnk1.

bottom of page